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S. Péru1,a, J.F. Berger1, and P.F. Bortignon2
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Abstract. Theoretical results for giant resonances in the three doubly magic exotic nuclei 78Ni, 100Sn and
132Sn are obtained from Hartree-Fock (HF) plus Random Phase Approximation (RPA) calculations using
the D1S parameterization of the Gogny two-body effective interaction. Special attention is paid to full
consistency between the HF field and the RPA particle-hole residual interaction. The results for the exotic
nuclei, on average, appear similar to those of stable ones, especially for quadrupole and octupole states.
More exotic systems have to be studied in order to confirm such a trend. The low energy of the monopole
resonance in 78Ni suggests that the compression modulus in this neutron-rich nucleus is lower than the
one of stable ones.

PACS. 21.10.Re Collective levels – 24.30.Cz Giant resonances – 21.60.Jz Hartree-Fock and random-phase
approximations – 23.20.Lv γ transitions and level energies

1 Introduction

Giant multipole resonances (GR) are collective excitations
of nuclei that lie at excitation energies above the nucleon
separation energy (8–10 MeV), have different multipolar-
ities and carry different spin-isospin quantum numbers.
They have been observed for stable nuclei throughout the
mass table with large cross-sections, close to the maxi-
mum allowed by sum rule arguments, implying that a large
number of nucleons participate in a very collective nuclear
motion [1,2]. It is a challenge both to experimentalists and
theorists to study the properties of these states for nuclei
far from the valley of stability. Not too much has been
done from the experimental side yet: let us just mention
the two measurements of the electric dipole GR (GDR)
made in neutron-rich oxygen isotopes [3,4]. Beside GR,
there are also low-lying collective excitations, in partic-
ular quadrupole and octupole states, which reflect much
more than the GR the detail of shell structure. More ex-
perimental data are available for such states [5] in the case
of unstable nuclei, giving us information on the modifica-
tions of the shell structure far from stability.

From the theoretical side, more and more calculations
of GR and low-lying states are performed nowadays in the
framework of microscopic HF + RPA or HFB + QRPA ap-
proaches. The effective nucleon-nucleon interactions used
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are taken as non-relativistic effective two-body poten-
tials [6] or relativistic Lagrangians for meson exchange [7].
Such microscopic approaches, although less accurate than
more phenomenological ones, usually describe reasonably
well the properties of these states in stable nuclei.

Among the effective forces used in the non-relativistic
approaches, the Gogny force [8,9] is one of those which has
been extensively employed for the description of GR and
low-lying states in doubly closed shell nuclei with the RPA
method [10–12]. Recently, this force has been used for the
first time in full Quasi-Particle RPA (QRPA) calculations.
Chains of isotopes in the oxygen, nickel and tin regions
have been studied in order to derive the properties of low-
lying states [13].

The purpose of this paper is to present the results
of calculations performed in three spherical exotic nuclei:
78Ni, 100Sn and 132Sn, and to compare them with those ob-
tained in stable nuclei. More precisely, GR and low-lying
states in these nuclei will be analyzed and comparisons
will be made with systematics and with analogous quanti-
ties in the well-known 208Pb. The latter nucleus will serve
as a reference and, for this reason, results for 208Pb will
be displayed along with those of the three exotic nuclei in
most tables and figures. Let us point out that the results
presented here for 208Pb are new. They have been derived
with the D1S parameterization of the Gogny force which
is the one currently used now. They slightly differ from
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those of ref. [10], where the older parameterization D1
was employed.

A point we pay special attention to in the present work
is the effect of the full consistency of the residual particle-
hole (p-h) interaction with the mean field produced by
the same force, as allowed by the use of consistently com-
bined HF and RPA approaches. In order to analyze this
effect, we present results where different components of
the residual p-h interaction such as those generated by
the spin-orbit or the Coulomb force are switched off. As
will be seen, the influence of these often omitted compo-
nents is far from being negligible.

In the following section details concerning the param-
eters of the two-body force, the numerical methods used
for solving the RPA equations are briefly recalled along
with a few useful formulas. Results are presented and dis-
cussed in sect. 3. The main conclusions of this work are
summarized in sect. 4. Let us mention that a preliminary
account of the present results has appeared in the work-
shop proceedings of ref. [14].

2 The HF + RPA approach with the Gogny

force

The RPA approach employed here is described in refs. [11,
10,12]. The effective force D1S proposed by Gogny [8,9] is
used. This finite-range density-dependent interaction de-
scribes the mean field of the nucleus, and the residual in-
teraction in the RPA calculations is obtained via the func-
tional second derivative of the mean field with respect to
the one-body density matrix. We want to stress that all
the terms of the effective force are considered in the HF
mean-field and in the residual p-h interaction, including
the spin-spin component, the Coulomb force and the terms
produced by the two-body spin-orbit interaction. Only the
two-body terms coming from the two-body center-of-mass
correction are not included in the RPA matrix elements.
Therefore, they have been also left out from the mean-field
calculations. In order to get the same binding energies and
radii as with the two-body center-of-mass correction, the
coefficient of the spin-orbit component of D1S has been re-
duced from 130 MeV to 115 MeV. Such a procedure was
previously employed in calculations with the D1 force, as
explained in ref. [8]. The Gogny force D1S including this
change of the spin-orbit strength will be called D1S′.

In the results presented here, spherical symmetry is
imposed. Consequently, nuclear states can be character-
ized by their angular momentum J and their parity π.
The individual Hartree-Fock wave functions are expanded
on finite sets of spherical harmonic oscillator (HO) wave
functions containing 15 major shells for all nuclei. For each
nucleus, the value of the parameter ~ω of the HO basis is
taken as the one minimizing the HF total nuclear energy.

The RPA equations are solved in matrix form in the
p-h representation. RPA energies do not appear very sen-
sitive to the value adopted for the HO parameter of the
basis. For instance, by changing the optimal HF value
~ω = 8.7 MeV in 208Pb by 10%, the variation of the IS-
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Fig. 1. Comparisons between the exact EWSR of eq. (3) (solid
line) and those deduced from eq. (2) (dotted line) in 78Ni for
the RPA states with Jπ = 0+, 2+, 3−, 4+ and 5−. The unit
of the EWSR scale is e2 MeV. The abscissa q represents the
transferred momentum.

GMR energy (13.46 MeV) is less than 0.5% and the energy
of the first 2+ at 4.609 MeV is changed by less than 5 keV.

Electric transition operators are defined according to

Q̂JM =
e

2

A∑

i

(1− τz(i)) jJ(qri)YJM (θi, φi), (1)

where jJ is a spherical Bessel function of order J , q a
transferred momentum, τz the third component of the nu-
cleon isospin and YJM the usual spherical harmonics.

The degree of collectivity of the excited states is mea-
sured from their contribution to the Energy-Weighted
Sum Rule (EWSR)

M1(Q̂JM ) =
∑

N

(EN − E0)|〈N |Q̂JM |0〉|
2 , (2)

where |0〉 and |N〉 are the RPA correlated ground state
and excited states, respectively and EN − E0 their exci-
tation energies. Equation (2) can also be expressed as the
average in the HF ground state |HF 〉 of a double commu-
tator [15]:

M1(Q̂JM ) =
1

2
〈HF |

[
Q̂JM ,

[
Ĥ, Q̂JM

]]
|HF 〉. (3)

Therefore, exact values of M1(Q̂JM ) can be computed
from expression (3), whereas smaller values will be ob-
tained from (2), reflecting the finiteness of the particle-
hole space used in the RPA calculations.

A comparison between the values calculated from (2)
and (3) is shown in fig. 1 for 78Ni as an example.

As can be seen, with the 15-major-shell basis em-
ployed, RPA calculations are able to describe with a rea-
sonable accuracy the nuclear response for Jπ = 0+, 2+,
3−, 4+ and 5− up to transferred momenta q = 1.5 fm−1.
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Fig. 2. Single-particle levels in the vicinity of the Fermi surface
for neutrons in the three studied exotic nuclei. Filled and empty
levels are represented by full and dashed lines, respectively. The
labels indicate the quantum numbers (nlj) of the levels.

3 Results

First, we will discuss the validity of the doubly magic
nature of these exotic nuclei. The single-particle neutron
spectra obtained in 78Ni, 100Sn and 132Sn are shown in
fig. 2.

The N = 50 gap in 78Ni and 100Sn and the N = 82
one in 132Sn are of the order of 5 MeV, which is less than
20% smaller than the gaps obtained for stable spherical
nuclei with same neutron numbers. The same is true for
the proton gaps at Z = 28 in 78Ni and at Z = 50 in tin
isotopes. That is, no significant reduction of the magic
gaps are observed in these nuclei. Therefore, the three
exotic nuclei are still doubly magic ones and the HF +
RPA method is applicable to them.

In what follows, results for states with multipolarities
0+, 2+, 1− and 3− are presented for four nuclei, 78Ni,
100Sn 132Sn and 208Pb, the latter nucleus being included
as a reference.

The strengths shown in the figures are given in per-
centage of the EWSR calculated in the long wavelength
limit q → 0. The relevant formulas to be used in this limit
for the different values of J are given in the appendix of
ref. [10].

In the present calculations the continuum spectrum of
the HF Hamiltonian is approximated by a discrete one.
As a consequence, the RPA strength functions appear in
the form of discrete peaks. In order to make comparisons
with experiments more meaningful, energy centroids will
be defined in terms of the moments,

Mk

(
Q̂JM

)
=
∑

N

(EN − E0)
k|〈N |Q̂JM |0〉|

2 , (4)

of the strength function. Two of these centroids will
be used in the following: the mean value of the en-
ergy M1/M0, and the so-called “hydrodynamic” energy√
M1/M−1 for isoscalar monopole resonances.
As experimental data on GR energies is scarce in exotic

nuclei, comparisons will often be made with the system-
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Fig. 3. Fraction of the EWSR carried by isoscalar Jπ = 0+

states in the four studied nuclei.

Table 1. Mean values and “hydrodynamic” centroids of IS-
GMR energies in MeV obtained with the D1S′ force in the
four studied nuclei compared with the empirical 80A−1/3 law
and the 208Pb experimental value from ref. [17].

0+ T = 0
M1

M0

√
M1

M−1

80A−1/3 Exp.

78Ni 17.17 17.07 18.72
100Sn 17.22 17.18 17.23
132Sn 15.29 15.22 15.72
208Pb 13.46 13.42 13.50 14.17± 0.28

atic A−1/3 empirical laws approximately verified in stable
nuclei [2]. Values from these systematics as well as avail-
able experimental data are given in the tables.

3.1 Monopole states

Figure 3 and table 1 display the results obtained for the
Isoscalar Giant Monopole Resonance (ISGMR).

As is well known, the excitation energies of this reso-
nance strongly depends on the compression modulus Knm

calculated in infinite nuclear matter [16]. One observes in
table 1 that the theoretical energies in 208Pb, although in
good agreement with the empirical 80A−1/3 law, are 5%
lower than the experimental value of ref. [17]. This differ-
ence is consistent with the compression modulus found in
infinite nuclear matter with D1S′,Knm = 209 MeV, which
is slightly outside the interval 220–235 MeV that explains
the bulk of experimental data within non-relativistic ap-
proaches [18].

Concerning the three exotic nuclei, we note that reso-
nance energies significantly differ from the empirical law
only in 78Ni. It must be noted that, of all three nuclei, 78Ni
is the one where the squared neutron-proton asymetry
((N − Z) /A)

2
most differs from the one of the stable iso-

tope: ((N − Z) /A)
2
−((N − Z) /A)

2

stable = 0.78, 0.36 and
−0.23 in 78Ni, 132Sn and 100Sn, respectively. It is therefore
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Table 2. Mean ISGMR energies in MeV obtained by leaving
out from the D1S′ p-h interaction: (1) the spin-orbit and the
Coulomb terms, (2) the Coulomb term, (3) the spin-orbit term,
(tot) no term.

M1/M0 (1) (2) (3) (tot)
78Ni 18.55 17.10 18.59 17.17
100Sn 18.19 16.81 18.54 17.22
132Sn 16.07 15.06 16.26 15.29
208Pb 13.73 13.05 14.10 13.46

tempting to correlate the ' 1.5 MeV lowering of the IS-
GMR found in 78Ni with this large neutron excess, the
contribution of the symmetry term Ksym to the finite nu-
cleus incompressibility KA being negative [19,20].

The strengths displayed in fig. 3 show that the ma-
jor part of the EWSR is concentrated in a single peak
in all four nuclei. This feature explains why the two sets
of theoretical energies listed in table 1 are very close
to each other. One notes that the fragmentation of the
strength is almost zero in the N = Z nucleus 100Sn,
whereas it is slightly bigger in the other three nuclei which
have neutron-proton asymmetry (N − Z)/A in the range
0.21–0.28.

In table 2, we show the values of the mean monopole
energies M1/M0 obtained when different terms of the
residual particle-hole (p-h) interaction are left out of the
RPA calculation. Columns (1), (2) and (3) refer to the
mean energies calculated by leaving out the spin-orbit and
the Coulomb terms, the Coulomb term and the spin-orbit
term, respectively.

One observes that the spin-orbit part of the residual in-
teraction gives a contribution to ISGMR energies ranging
from 8% in 78Ni to 5% in 208Pb. In contrast, the Coulomb
contribution is larger in Pb (3%) and almost negligible in
Ni. These results are consistent with those discussed in
ref. [18] where 40Ca, 90Zr and 208Pb were analyzed with
the SLy4 interaction. In the latter work, the inclusion in
the constrained HF (CHF) of the Coulomb force and of
the spin-orbit component of the Skyrme interaction was
proved to be essential in order to reconcile the value of
Knm obtained with the Skyrme and Gogny forces.

3.2 Quadrupole states

Figure 4 and tables 3, 4 and 5 display the results obtained
for isoscalar quadrupole states. Figure 4 shows that in all
four nuclei the quadrupole strength is divided essentially
between two states: the isoscalar Giant Quadrupole Reso-
nance (ISGQR) exhausting ' 80% of the EWSR with an
energy in the range 12–16 MeV and a lower-lying state
at ' 3–5 MeV carrying ' 10%–15% of the quadrupole
strength. We will label the latter 2+

1 .
The theoretical ISGQR energies are calculated using

M1/M0 excluding the 2+
1 state. The results shown in

table 3 are seen to be higher than the A−1/3 systematics
by 1.0–1.5 MeV. As the latter agrees well with the
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Fig. 4. Fraction of the EWSR carried by isoscalar Jπ = 2+

states in the four studied nuclei.

Table 3. Mean values of ISGQR energies in MeV obtained
with D1S′ in the four studied nuclei compared with the em-
pirical 64A−1/3 law and the 208Pb experimental value from
ref. [2].

ISGQR D1S′ 64A−1/3 Exp.
78Ni 15.94 14.98
100Sn 15.13 13.79
132Sn 13.79 12.57
208Pb 11.98 10.80 10.60

Table 4. Energies in MeV and corresponding B(E2) in e2fm4

of 2+

1 states calculated with the D1S′ interaction. Existing ex-
perimental data from refs. [24] and [25] are also listed.

Experiment

2+

1 E B(E2) E (MeV) B(E2)
78Ni 2.73 466
100Sn 3.84 1431
132Sn 3.97 1134 4.041 1400 (600)
208Pb 4.609 2781 4.08 3180 (160)

experimental value in 208Pb, it is difficult to draw definite
conclusions concerning the behaviour of our results in the
three exotic nuclei. Let us mention that such large ISGQR
energies can be understood from a too large spreading
of the particle-hole spectrum in the 2+ channel at high
energies. Such spreading is a consequence of the value of
the effective mass of the D1S′ interaction (m∗/m = 0.7)
which is the one giving correct single-particle properties
in mean-field calculations. As is well known, taking into
account the coupling of RPA configurations to 2-particle–
2-hole (2p-2h) states would reduce this disagreement [21,
22]. Clearly, such a coupling should be introduced in the
present calculations before reliable predictions for the
ISGQR in exotic nuclei can be made [23]. Let us mention
that the same is true for the other giant resonances, with
some dependence on the mode quantum numbers [22].
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Table 5. Energies in MeV and B(E2) of 2+

1 states obtained by leaving out from the D1S′ p-h interaction: (1) the spin-orbit
and the Coulomb terms, (2) the Coulomb term, (3) the spin-orbit term, (tot) no term.

2+

1 (1) (2) (3) (tot)

E B(E2) E B(E2) E B(E2) E B(E2)
78Ni 3.53 257 2.84 456 3.43 271 2.73 466
100Sn 4.64 1103 3.95 1552 4.48 1041 3.84 1431
132Sn 4.61 775 4.04 1182 4.53 770 3.97 1134
208Pb 5.15 2305 4.65 3145 5.09 2123 4.61 2781

1 2 3 4 5 6 7 8
r(fm)

0.0
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10-2e.fm-3

TR
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)

78Ni

E(2+
1)=2.74 MeV

Fig. 5. Neutron (full line) and proton (dashed line) transition
densities for the first 2+ state in 78Ni.

Nevertheless, few results have been obtained up to now
with such a coupling and it is difficult to foresee the
magnitude of energy shifts, except for quadrupole and
dipole states.

Our theoretical results for low-lying 2+
1 states are pre-

sented in table 4. For these states, experimental data ex-
ist both for 208Pb [24] and 132Sn [25]. As can be seen, a
fair agreement between experiment and theory is found in
208Pb and an even better one in 132Sn, with B(E2) val-
ues being of the same order of magnitude as experimen-
tal ones. It is to be noted that we use the bare nucleon
charges because no inert core is assumed. Let us point
out that QRPA calculations applied to quadrupole states
have been made recently with the D1S interaction for a
series of tin isotopes including 132Sn [13]. In these calcu-
lations, the spin-orbit part and the Coulomb part of the
residual interaction were omitted for simplicity reasons.
The 2+ energies were found larger than the experimen-
tal ones by 400 keV in 102Sn and 1 Mev in 132Sn. The
corresponding theoretical B(E2) values were lower than
experimental ones by at least a factor of two.

These results are consistent with those shown in table 5
where the same quantities as those of table 4 are displayed.
They have been calculated by leaving out from the D1S′

p-h interaction the spin-orbit and the Coulomb terms, the
Coulomb term, the spin-orbit term and no term, respec-
tively. One observes that, as previously for monopole vi-
brations, taking into account the spin-orbit part of the
residual interaction is essential to get results consistent
with experimental data.
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Fig. 6. Fraction of the EWSR carried by isovector Jπ = 1−

states in the four studied nuclei.

Table 6. Mean values of IVGDR energies in MeV obtained
with D1S′ in the four studied nuclei compared with the em-
pirical 79A−1/3 law and the 208Pb experimental value from
ref. [28].

IVGDR D1S′ 79A−1/3 Exp.
78Ni 20.31 18.49
100Sn 19.98 17.02
132Sn 18.33 15.52
208Pb 16.50 13.33 13.43

Going back to table 4, 2+
1 energies are similar in 100Sn

and 132Sn, whereas a comparatively low value is predicted
in 78Ni. Let us note that the 2+

1 state in 78Ni is still higher
than the one in 56Ni, the other doubly magic Ni isotope,
where the experimental value of the 2+

1 state is 2.7 MeV
and the RPA calculated one is 2.42 MeV with D1S′.

The collectivity of this 2+ state appears larger in 100Sn
than in 132Sn and rather weak in 78Ni. Figure 5 displays
the transition density ρTR of this first 2+

1 state in 78Ni.
The definition of the transition density is the same as the
one given in the appendix of ref. [10].

One observes that the two transition densities are in
phase and that the neutron transition density is higher
than the proton one and displaced to a larger radius. This
mode can therefore be interpreted as an isoscalar surface
mode dominated by neutron excitation.
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Table 7. Mean IVGDR energies in MeV and EWSR in TRK units for 208Pb calculated by leaving out from the D1S′ p-h
interaction: (1) the spin-orbit and the Coulomb terms, (2) the Coulomb term, (3) the spin-orbit term, (tot) no term. The three
lines show the results obtained for the three energy intervals given in MeV in the leftmost columm. The rightmost column gives
experimental EWSR in TRK units.

208Pb (1) (2) (3) (tot) Exp.

〈E〉 EWSR 〈E〉 EWSR 〈E〉 EWSR 〈E〉 EWSR EWSR

[0–140] 15.88 1.63 15.70 1.62 16.71 1.59 16.50 1.59 1.78

[0–20] 15.10 1.41 15.31 1.47 15.83 1.33 15.86 1.42

[10–20] 15.20 1.39 15.17 1.49 15.90 1.32 15.95 1.41 1.37

3.3 Dipole states

Results for the isovector dipole resonance (IVGDR) are
presented in fig. 6 and table 6.

100Sn is the nucleus where the giant dipole mode is
the least fragmented with 70% of the strength concen-
trated into two peaks. The dipole responses of 208Pb and
132Sn and, to a lesser extent, of 78Ni also appear concen-
trated into two main energy regions. It is expected that
the fragmentation is somewhat reduced by the coupling
of the RPA modes to 2p-2h states, producing smoother
strength functions, as in refs. [26,27] where Skyrme forces
were used.

In 100Sn the mean value M1/M0 = 19.98 MeV is 3
MeV larger than the systematic 79A−1/3 law (17.02 MeV).
The EWSR value given in Thomas-Reiche-Kuhn (TRK)
unit is 1.59, which is large compared to typical exper-
imental values [28]. The IVGDR in 132Sn is more frag-
mented than in 100Sn. As in 100Sn the mean energy value,
18.33 MeV, is much larger than systematics (79A−1/3 =
15.52 MeV) and the EWSR value is 1.58. In the case of
78Ni, the IVGDR is quite fragmented with one major peak
and smaller ones at higher energy. The mean energy value,
20.31 MeV, remains higher than systematics (79A−1/3 =
18.49 MeV) and the EWSR in TRK unit is 1.57.

It must be said that IVGDR excitation energies cal-
culated with the Gogny force usually overestimate exper-
imental data. In the case of 208Pb, the calculated mean
value is 16.50 MeV, which is quite large compared to ex-
periment (13.43 MeV [28]), but smaller than the result of
ref. [10]. Let us note that ignoring the higher part of the
IVGDR response by keeping only the strength around the
main lower energy peak, considerably improves the agree-
ment with systematic estimations: mean energy values be-
come 19.28 MeV, 18.16 MeV, 16.81 MeV and 14.99 MeV
in 78Ni, 100Sn, 132Sn and 208Pb, respectively.

In fact, calculated IVGDR energies and EWSR appear
quite sensitive to the energy interval considered and also
to the components of the effective interaction included in
the p-h residual interaction. This is shown in table 7 where
mean IVGDR energies and EWSR in 208Pb are listed for
three energy integration intervals and for RPA calcula-
tions where Coulomb and/or spin-orbit terms are not in-
cluded in the RPA matrix elements. One can see that the
overestimation obtained with the Gogny force decreases
by ' 700 keV when the Coulomb and the spin-orbit forces
are ignored, which is usually done in RPA calculations

Table 8. Energy in keV of the isoscalar 1−sp spurious state cal-
culated by leaving out from the D1S′ p-h interaction: (1) the
spin-orbit and the Coulomb terms, (2) the Coulomb term,
(3) the spin-orbit term, (tot) no term. The symbol ∈ = means
that the RPA eigenvalue is imaginary.

1−sp T = 0 (1) (2) (3) (tot)
132Sn ∈ = ∈ = 2205.78 4.26
208Pb ∈ = ∈ = 1605.19 2.29

employing Skyrme forces, see, however, ref. [29]. By tak-
ing all the terms of the Gogny force and considering the
largest energy interval, the calculated EWSR given is 1.59
in TRK units. This value is higher than the experimental
one obtained for a 10–20 MeV energy interval (1.37) [28]
but lower than the one obtained for an energy interval go-
ing up to 140 MeV (1.78) [30]. In this case, however, an-
other mechanism, the “quasi-deuteron effect”, is expected
to play a major role in the photon absorption [30].

It is of great interest, beyond nuclear physics itself,
to study the amount of excited low-lying dipole strength,
that is the often called “pygmy” resonances. In terms
of EWSR, we obtain much less than 1% strength below
10 MeV in Ni and Sn nuclei, and about that amount in
208Pb. The result for Pb is in agreement with the data of
ref. [31]. The absence of collective states in the low-lying
region is at variance with the results of relativistic RPA
calculations [7], but agrees with the arguing in ref. [6].
There, it is pointed out that the soft dipole strength should
decrease in nuclei displaying a neutron skin, compared to
that in light halo nuclei because of a more efficient cou-
pling to the IVGDR. On the other hand, the coupling to
2p-2h can significantly increase the amount of low-lying
strength [26,27].

By introducing a very small renormalization factor
(1.01–1.03) of the residual interaction, the isoscalar spuri-
ous mode can be made to appear at zero frequency. This
factor is introduced only in the Jπ = 1− subspace. In ta-
ble 8, the values of the energy of this state are shown as
calculated with or without different parts of the D1S′ p-
h interaction. For each nucleus the same renormalisation
factor is used in the four cases. The symbol ∈ = means
that the RPA eigenvalue is imaginary. These results show,
as expected, that the consistency between the HF field and
the residual interaction is important for the treatment of
the spurious states.
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Table 9. Energies in MeV of the first 3− state and corresponding B(E3) in 106 e2fm6 calculated by leaving out from the
D1S′ p-h interaction: (1) the spin-orbit and the Coulomb terms, (2) the Coulomb term, (3) the spin-orbit term, (tot) no term.
Experimental data from ref. [32] is also listed.

3−1 (1) (2) (3) (tot) Exp.

E B(E3) E B(E3) E B(E3) E B(E3) E B(E3)
78Ni 7.95 0.170 7.80 0.221 7.87 0.181 7.70 0.231
100Sn 7.26 0.130 6.95 0.149 7.13 0.128 6.82 0.147
132Sn 5.78 0.123 5.60 0.139 5.72 0.124 5.53 0.140
208Pb 3.55 0.725 3.38 0.782 3.57 0.677 3.39 0.727 2.6 0.611 (120)
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Fig. 7. Fraction of the EWSR carried by isoscalar Jπ = 3−

states in the four studied nuclei.

3.4 Octupole states

As shown in fig. 7, the Jπ = 3− states belong to two
well-separated energy regions. Only the component at en-
ergies larger than ' 15 MeV can be considered as a gen-
uine giant resonance, the High Energy Octupole Reso-
nance (HEOR). Keeping only high-energy regions (19–
35 MeV for 100Sn, 22–31 MeV for 132Sn, 22–44 MeV
for 78Ni and 13–28 MeV for 208Pb), the mean calculated
HEOR energies are 28.16 MeV, 26.06 MeV, 29.51 MeV
and 23.20 MeV, respectively. These values give system-
atics E0A

−1/3, with E0 = 130, 132, 126, and 137 in
the four nuclei, to be compared with the usual estimate
110A−1/3 [33]. Previous studies in stable nuclei [10] gave
values between 130A−1/3 and 140A−1/3 for heavy nuclei
and around 120A−1/3 in lighter ones. We therefore do not
observe a strongly different behaviour of HEOR energies
in exotic nuclei compared to the one previously obtained
along the valley of stability.

The characteristics of the low-energy 3− states are re-
ported in table 9. The influence of the different compo-
nents of the D1S′ force included in the p-h interaction
is also shown. The effect of the spin-orbit term appears
to be smaller than for the quadrupole states in table 5,
especially for 78Ni.
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Fig. 8. Fraction of the isovector EWSR carried by Jπ = 0+

states in the four nuclei.
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Fig. 9. Fraction of the isovector EWSR carried by Jπ = 2+

states in the four nuclei.

3.5 Isovector strength

In figs. 8–10, the fractions of the isovector EWSR carried
by the Jπ = 0+, 2+, 3− states is drawn. In this case,
systematics for stable nuclei are not yet well known [2]
and is not reported.
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Fig. 10. Fraction of the isovector EWSR carried by Jπ = 3−

states in the four nuclei.

Note that only the transition operator is changed com-
pared to the isoscalar case in figs. 3, 4 and 7. From the
comparison between the two sets of figures, a much larger
fragmentation of the strength is found in the isovector
case, and a mixed (isoscalar-isovector) character of sev-
eral states appears, as expected, in particular in 78Ni.

4 Conclusion

To summarize, we have presented the results obtained for
different giant resonances in three doubly magic exotic nu-
clei, using the HF + RPA approach and the Gogny force.
The largest difference with usual doubly magic nuclei in-
side the valley of stability occurs in 78Ni where the ISGMR
appears significantly lower than systematics. This seems
to be due to the large proton-neutron asymmetry of this
nucleus.

The fragmentation of the isovector dipole strength has
to be explored further in order to see the correlation or
the no-correlation with proton-neutron radius differences.
In particular, the nature of the double peaks obtained in
tin isotopes remains to be determined.

Results obtained in the three exotic nuclei for the IS-
GQR and HEOR resonances are similar to those of 208Pb,
but more exotic systems have to be studied to confirm
such a trend.

Low-energy states and B(E2) values appear to be well
reproduced within the present approach, in particular the
first 2+ one in 132Sn.

From a more general point of view, we have found that
the spin-orbit component of the p-h residual interaction
plays a very important role in the structure of the low-
lying quadrupole and octupole states, as it strongly influ-
ences both excitation energies and transition probabilities.
Similarly, our results show that including the Coulomb
force in the RPA p-h matrix elements significantly affects
IVGDR energies and EWSR.
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10. J. Dechargé, L. Sips, Nucl. Phys. A 407, 1 (1983).
11. J.P. Blaizot, D. Gogny, Nucl. Phys. A 284, 429 (1977).
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